Structured backward error for palindromic polynomial eigenvalue problems

نویسندگان

  • Ren-Cang Li
  • Wen-Wei Lin
  • Chern-Shuh Wang
چکیده

A detailed structured backward error analysis for four kinds of Palindromic Polynomial Eigenvalue Problems (PPEP) ( d ∑ l=0 Alλ l ) x = 0, Ad−l = εA ⋆ l for l = 0, 1, . . . , ⌊d/2⌋, where ⋆ is one of the two actions: transpose and conjugate transpose, and ε ∈ {±1}. Each of them has its application background with the case ⋆ taking transpose and ε = 1 attracting a great deal of attention lately because of its application in the fast train modeling. Computable formulas and bounds for the optimal structured backward errors are obtained. The analysis reveals distinctive features of PPEP from the usual Polynomial Eigenvalue Problems (PEP) as investigated by Tisseur (Linear Algebra Appl., 309:339–361, 2000) and by Liu and Wang (Appl. Math. Comput., 165:405–417, 2005).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structured Eigenvalue Backward Errors of Matrix Pencils and Polynomials with Palindromic Structures

We derive formulas for the backward error of an approximate eigenvalue of a ∗palindromic matrix polynomial with respect to ∗-palindromic perturbations. Such formulas are also obtained for complex T -palindromic pencils and quadratic polynomials. When the T -palindromic polynomial is real, then we derive the backward error of a real number considered as an approximate eigenvalue of the matrix po...

متن کامل

Structured Backward Error Analysis of Linearized Structured Polynomial Eigenvalue Problems

We start by introducing a new class of structured matrix polynomials, namely, the class of MA-structured matrix polynomials, to provide a common framework for many classes of structured matrix polynomials that are important in applications: the classes of (skew-)symmetric, (anti-)palindromic, and alternating matrix polynomials. Then, we introduce the families of MAstructured strong block minima...

متن کامل

Structured Eigenvalue Condition Number and Backward Error of a Class of Polynomial Eigenvalue Problems

We consider the normwise condition number and backward error of eigenvalues of matrix polynomials having ⋆-palindromic/antipalindromic and ⋆-even/odd structure with respect to structure preserving perturbations. Here ⋆ denotes either the transpose T or the conjugate transpose ∗. We show that when the polynomials are complex and ⋆ denotes complex conjugate, then to each of the structures there c...

متن کامل

Backward Error Analysis of Polynomial Eigenvalue Problems Solved by Linearization

One of the most frequently used techniques to solve polynomial eigenvalue problems is linearization, in which the polynomial eigenvalue problem is turned into an equivalent linear eigenvalue problem with the same eigenvalues, and with easily recoverable eigenvectors. The eigenvalues and eigenvectors of the linearization are usually computed using a backward stable solver such as the QZ algorith...

متن کامل

Palindromic Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations

Palindromic polynomial eigenvalue problems and related classes of structured eigenvalue problems are considered. These structures generalize the concepts of symplectic and Hamiltonian matrices to matrix polynomials. We discuss several applications where these matrix polynomials arise, and show how linearizations can be derived that reflect the structure of all these structured matrix polynomial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 116  شماره 

صفحات  -

تاریخ انتشار 2010